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Abstract

Recently several authors have proposed stochastic models of the growth of the Web
graph that give rise to power-law distributions. These models are based on the notion
of preferential attachment leading to the “rich get richer” phenomenon. However, these
models fail to explain several distributions arising from empirical results, due to the fact
that the exponent they predict is not consistent with the data. To address this problem
we extend the evolutionary model of the Web graph by including a non-preferential com-
ponent and viewing the stochastic process in terms of an urn transfer model. By making
this extension we can now explain a wider variety of empirically discovered power-law
distributions provided the exponent is greater than two. These include: the distribution
of incoming links, the distribution of outgoing links, the distribution of pages in a Web
site and the distribution of visitors to a Web site.

1 Introduction

A power-law distribution is a function of the form

f(i) = C i−τ ,

where C and τ are positive constants. Power-law distributions are scale-free in the sense that

if i is rescaled by multiplying it by a constant, then f(i) would still be proportional to i−τ .

Power-law distributions are abundant, for example Zipf’s law [Rap82], which states that
relative frequency of words in a text is inversely proportional to their rank, and Lotka’s

law [Nic89], which is an inverse square law stating that the number of authors making n
contributions is proportional to n−2. (We refer the reader to [Sch91] for more examples of

power-law distributions.)

Recently several researchers have detected power-law distributions in the Internet [FFF99]
and World-Wide-Web [BKM+00, DKM+01] topologies. In order to understand how these

power-law distributions emerge and how the Web has evolved and is evolving, several re-
searchers have recently been studying stochastic models of graphs which give rise to such

distributions. One particular power-law phenomenon that has attracted attention is the dis-
tribution of incoming links to a Web page. This distribution is important, since a link from

Web page P to Web page Q can be viewed as a recommendation of page Q; thus Web pages
having more incoming links are more highly recommended and therefore potentially of higher

quality. This observation is the basis of Google’s PageRank algorithm [Hen01].
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Albert et al. [ABJ00] studied a stochastic model of growth and preferential attachment,

where new links to existing Web pages are added in proportion to the number of incoming
links these Web pages already have. Their theoretical model predicts an exponent τ = 3,

which is not in agreement with the value of approximately 2.1 obtained from the study
reported in [BKM+00]. Dorogovtsev et al. [DMS00a] generalise Albert et al.’s model and

predict an exponent greater than two. More precisely, they obtain the value 2 + A/m for
the exponent, where A is the initial attractiveness of a newly created Web page and m is the
number of new links added to the Web graph at each step of the stochastic process. This

exponent value is consistent with the empirical value of the exponent of the distribution of
incoming links provided A/m is sufficiently small. Bornholdt and Ebel [BE00] pointed out

that the stochastic process proposed by Simon [Sim55] in 1955 can also offer an explanation
of the power-law distribution. (We note that during the period of 1959-1961 there was a fierce

debate between Mandelbrot and Simon in Information and Control on the validity of Simon’s
model [Man59].) In reply to Bornholdt and Ebel, Dorogovtsev et al. [DMS00b] note that the

model they describe in [DMS00a] essentially coincides with Simon’s model.

The models discussed above are based on the process of preferential attachment and do
not take into account the fact that links may also be added or removed randomly through a

non-preferential process. By this we mean that the probability of adding or removing a link
to a particular Web page may be influenced by factors other than the popularity of that Web

page, where popularity is measured by the number of incoming links. Our main contribution
in this paper is to extend Simon’s model [Sim55] with a non-preferential component and view

the stochastic process in terms of an urn transfer model [JK77]. (We note that at the end
of Section 3 of his seminal paper Simon suggested adopting a mixture of preferential and

non-preferential components but did not develop the idea.) By making this extension we
can explain a wider variety of empirically discovered power-law distributions than can be

explained with Simon’s original model. These include: the distribution of incoming links, the
distribution of outgoing links, the distribution of pages in a Web site and the distribution of
visitors to a Web site.

The rest of the paper is organised as follows. In Section 2 we present an urn transfer
model that generalises Simon’s original model. In Section 3 we demonstrate how this can

provide a stochastic model for the evolution of the Web that is consistent with a wide range
of empirical data. Finally, in Section 4 we give our concluding remarks. The proofs of some of

the mathematical results are given in the Appendix. As far as we are aware our convergence
proof given in the Appendix is the first formal proof validating Simon’s model − it does not

rely on the mean-field theory approach, as for example in [BAJ99].

2 An Urn Transfer Model

We now present an urn transfer model [JK77] for a stochastic process that we will use in
Section 3 to analyse the evolution of the Web graph. Our model is an extension of Simon’s

stochastic process [Sim55], which was originally described in terms of the underlying process
leading to the distribution of words in a piece of text. Simon’s stochastic process is essentially

a birth process, where there is a constant probability p that the next word is a new word and,
given that the next word has already appeared, its probability of occurrence is proportional

to the previous number of occurrences of that word. We extend Simon’s model by setting
the probability of occurrence of a word, given that it has already appeared, to be a weighted
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average of the preferential probability, as described above, and the uniform probability if

all words were equiprobable. As we noted in the introduction, this extension was already
proposed by Simon at the end of Section 3 of his paper. Simon set out this extension in

equation (3.7) and presented a tentative solution in equation (3.8). As we will see in Section 3,
this extension of Simon’s model makes sense in the context of the Web, since, for example,

links to a Web site are often added or removed in a random fashion without taking into
consideration the “importance” of the site in terms of how many links it already has. We
now describe our urn model in detail.

We assume a countable number of urns, urni, i = 1, 2, 3, . . ., where each ball in urni has i
pins attached to it. Initially, at stage k = 1 of the stochastic process, all the urns are empty

except urn1 which has one ball in it. Let Fi(k) be the number of balls in urni after k steps
of the stochastic process, so F1(1) = 1, and let p and α be parameters, with 0 < p < 1 and

α > −1. Then, at stage k+1 of the stochastic process for k ≥ 1, one of two things may occur:

(i) with probability pk+1, where

pk+1 = 1− (1− p)∑k
i=1(i+ α)Fi(k)

k(1 + αp) + α(1− p) , (1)

a new ball is added to urn1 (provided that 0 ≤ pk+1 ≤ 1) or,

(ii) with probability 1− pk+1, an urn is selected − urni being chosen with probability

(1− p)(i+ α)Fi(k)

k(1 + αp) + α(1− p) , (2)

for 1 ≤ i ≤ k; then one ball from urni is transferred to urni+1. This is equivalent to
attaching an additional pin to the ball chosen from urni and moving it to its “correct”

urn. (We note that the denominator appearing in (1) and (2) has been chosen so that
the expected value of pk+1 is p; see (8) below.)

At each stage we either add a new ball with one pin or add a pin to an existing ball and
move the ball to the next urn up, so at stage k the total number of pins is k, i.e.

k∑

i=1

iFi(k) = k.

It is obvious that Fi(k) = 0 for any i > k. We call the above model the pk-model.

Let B(k) =
∑
i Fi(k), the total number of balls in all the urns. We can now simplify (1)

to

pk+1 = 1− (1− p)(k+ αB(k))

k(1 + αp) + α(1− p) . (3)

Since it is clear from (3) that pk+1 < 1, in order for pk+1 to be well defined, we must have
pk+1 ≥ 0 for k ≥ 1, i.e.

(1− p)(k+ αB(k)) ≤ k(1 + αp) + α(1− p). (4)
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In the Appendix we show that pk+1 is always well defined (i.e. non-negative) for all k

when p ≥ 1/2, but only if

α ≤ p

1− 2p
(5)

when p < 1/2. In the discussion at the end of Section 3 we suggest that, in practice, starting
from a typical initial configuration of balls in the urns, it is likely that pk+1 will be well defined

for all k, even if (5) does not hold.

We next make a small digression to explain our use of (2) rather than the more natural
definition of the probability as

(1− p)(i+ α)Fi(k)
∑k
i=1(i+ α)Fi(k)

=
(1− p)(i+ α)Fi(k)

k + αB(k)
. (6)

In order to find a solution for the expected value of Fi(k), we would need to take the

expected value of (6); this is problematic since the random variables B(k) and Fi(k) are not
independent and it is therefore not clear how to calculate the expectation of the right-hand

expression in (6). We observe that this problem does not arise in Simon’s original model
[Sim55], since in this case we have α = 0 and the denominator reduces to the constant k in
both (2) and (6). In our case, when α is not necessarily zero, by using (2) instead of the more

natural (6), there is no problem in computing the expectation of Fi(k), since the parameter
p is a constant, allowing us to find the expected value of Fi(k) by using the linearity of

expectations.

In the Appendix we prove the following results for the expectations of B(k) and pk for

k > 1, namely

E(B(k)) = E

( k∑

i=1

Fi(k)

)
= 1 + (k − 1)p (7)

and

E(pk) = p. (8)

(We note that E(B(1)) = B(1) = 1.)

Thus, in terms of expectations (i.e. using a mean-field theory approach), it is possible to

describe the urn transfer model as a “more natural” stochastic process, where at each stage
k, for k > 1, either

(i) a new ball is inserted into urn1 with probability p, or

(ii) with probability 1− p an urn is chosen, the probability of choosing urni being propor-
tional to (i+ α)Fi(k), and then one ball from urni is transferred to urni+1.

We stress that, since this model uses the expectations of the random variables pk+1 rather

than the random variables themselves, it is only an approximation of our urn transfer model.
This model, which we call the p-model, is in fact the “more natural” model discussed above
that uses (6) instead of (2).

We note that we could modify the initial condition of our stochastic process so that, for
example, urn1 would initially contain δ > 1 balls instead of one, or more generally that a
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finite number of urns would initially be non-empty with some prescribed number of balls in

each. As can be seen from the development of the model below, as k tends to infinity, such a
change in the initial conditions will not have an effect on the asymptotic distribution of the

balls in the urns.

We call the transfer of a ball as a result of (ii) above a mixture of preferential and non-
preferential transfer. When α = 0, then the transfer is purely preferential otherwise non-

preferential transfer takes a part in the process.

Following Simon [Sim55], we now state the equations for the pk-model. For i > 1 (including

i > k), we have:

Ek(Fi(k+ 1)) = Fi(k) + βk

(
(i− 1 + α)Fi−1(k)− (i+ α)Fi(k)

)
, (9)

where Ek(Fi(k + 1)) is the expected value of Fi(k + 1) given the state of the model at stage

k, and

βk =
1− p

k(1 + αp) + α(1− p) ,

the normalising constant used in (2).

Equation (9) gives the expected number of balls in urni as the previous number of balls in
that urn plus the difference between the probability of increasing the number of balls in urni,

which is equal to the probability of choosing urni−1 in step (ii) of our urn transfer model, and
the probability of decreasing the number of balls in urni, which is equal to the probability of

choosing urni.

In the boundary case, i = 1, we have

Ek(F1(k + 1)) = F1(k) + pk+1 − βk(1 + α)F1(k), (10)

which describes the expected number of balls in urn1, which is the previous number of balls

in the first urn plus the difference between the probability of inserting a new ball in urn1 and

the probability of transferring a ball from urn1 to urn2.

Now letting

β =
1− p

1 + αp
,

we see that kβk ≈ β for large k. In fact, for k ≥ 1,

β − kβk = αββk. (11)

Using the facts that 0 < p < 1 and α > −1, it is also easy to see that

0 < β < 1, (12)

and, for k ≥ 1,

0 < βk <
1

k + α
. (13)
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Since the right-hand sides of (9) and (10) are linear in the random variables, using (8),

we may take expectations to obtain

E(Fi(k + 1)) = E(Fi(k)) + βk

(
(i− 1 + α)E(Fi−1(k))− (i+ α)E(Fi(k))

)
(14)

for i > 1, and

E(F1(k + 1)) = E(F1(k)) + p− βk(1 + α)E(F1(k)). (15)

In order to solve equations (14) and (15) we show that E(Fi(k))/k tends to a limit fi,

as k tends to infinity. Assume for the moment that this is the case, then, letting k tend to
infinity, E(Fi(k + 1))− E(Fi(k)) tends to fi and βkE(Fi(k)) tends to βfi; so (14) and (15)

yield

fi = β

(
(i− 1 + α)fi−1 − (i+ α)fi

)
(16)

for i > 1, and
f1 = p− β(1 + α)f1. (17)

Now let us define fi, i ≥ 1, by the recurrence relation (16) with boundary condition (17).
We may then let

E(Fi(k)) = k(fi + εi,k), (18)

and in the Appendix we prove that εi,k tends to zero as k tends to infinity. This justifies our

assumption that E(Fi(k))/k tends to fi as k tends to infinity. We therefore see that fi is the
asymptotic expected rate of increase of the number of balls in urni.

From (16) and (17) we obtain

fi =
β(i− 1 + α)

1 + β(i+ α)
fi−1 (19)

and

f1 =
p

1 + β(1 + α)
, (20)

respectively.

Now, on repeatedly using (19), we get

fi =
ρ p (1 + α) (2 + α) · · · (i− 1 + α)

(1 + ρ+ α) (2 + ρ+ α) · · · (i+ ρ+ α)

=
ρ p Γ(i+ α) Γ(1 + ρ+ α)

Γ(1 + α) Γ(i+ 1 + ρ+ α)
, (21)

where ρ = 1/β and Γ is the gamma function [AS72, 6.1].

It follows that for large i, on using Stirling’s approximation [AS72, 6.1.39], we have

fi ∼ C i−(1+ρ), (22)

where C is independent of i and ∼ means is asymptotic to. Thus we have derived in (22) a
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general power-law distribution for fi, with exponent 1 + ρ. An obvious consequence of (19)

is that fi > fi+1, i.e. asymptotically there are more balls in urni than in urni+1.

It follows from (6), (7) and (8) that (16) and (17) will also hold for the asymptotic
distribution for the p-model obtained using the mean-field theory approach. Hence, on the

assumption that this approach is valid, the asymptotic distribution will be the same as for
the pk-model, as given by (21) and (22).

When α = 0 then the extended model reduces to Simon’s original model and by increasing

α the exponent will increase accordingly. In any case the exponent is always greater than 2,
so the expected number of pins per ball is finite. The constraint that ρ > 1 is equivalent to

the condition that α > −1. Another way to understand this constraint is that if α ≤ −1 then
the first urn will never be chosen in case (ii) of the stochastic process, and thus no ball will

ever be transferred out of urn1. When ρ is close to 1 we obtain Lotka’s law [Nic89], which
is an inverse square power-law; see also Price’s cumulative advantage distribution leading to

Lotka’s law [Pri76, KH95].

In many real situations, such as the Web, p is generally small. For example, if we interpret

balls as Web pages and the number of pins attached to a ball as the number of links incoming
to that Web page, then we expect the ratio of pages to links to be quite small, say 0.1, and

thus the exponent of the power-law to be just over two. If the value of p and the power-
law exponent are obtained from empirical evidence, we may find a discrepancy from Simon’s

original model, i.e. when α = 0. Our current extension can explain this discrepancy through
the non-preferential component as long as the exponent is greater than two.

3 A Model for the Evolution of the Web

We now describe a discrete stochastic process by which the Web graph could evolve. At each
time step the state of the Web graph is a directed graph G = (N,E), where N is its node set

and E is its link set. In this case Fi(k), i ≥ 1, is the number of nodes in the Web graph having
i incoming links; Fi(k) induces an equivalence class of nodes in N all having i incoming links.

We note that although we have chosen i to denote the number of incoming links, i could
alternatively denote the number of outgoing links, the number of pages in a Web site or any

other reasonable parameter.

Consider the evolution process of the Web graph with respect to the number of nodes

having i incoming links at the kth step of the process. Initially G contains just a single node.
At each step one of two things can happen. With probability p a new node is added to G

having one incoming link. In the p-model, this is equivalent to placing a new ball in urn1.
With probability 1− p a node is chosen with probability proportional to (i+ α), and then an

additional incoming link is added to this node. In the p-model this is equivalent to a mixture
of preferential and non-preferential transfer of a ball from urni to urni+1; the mixture level

depends on the value of the parameter α.

We now look at some of the measurements of the Web graph which were reported recently.
Broder et al. [BKM+00] reported a power-law distribution with exponent 2.09 for the number

of incoming links (referred to as inlinks) to a node. This value was derived from a 203 million
node crawl of the Web graph. The average number of inlinks per Web page was measured at

7



about 8 [KRRT99], which gives us a value of 0.125 for p. We can compute α by

α =
ρ(1− p)− 1

p
.

Thus a more accurate model of the stochastic process generating the distribution of in-
coming links would assume α ≈ −0.37 rather than α = 0. (It would not be unreasonable in

this case to assume Simon’s model, i.e. α = 0, which would give an exponent of 2.14, since
the small difference in the exponents may be due to statistical error.)

Looking at the outgoing links (referred to as outlinks) from a node, Broder et al. [BKM+00]
reported a power-law distribution with exponent 2.72. Moreover, the average number of

outlinks per Web page was measured at about 7.2 [KRR+00], which gives a value of 0.14 for
p. Thus to get an exponent of 2.72 we would have to assume α ≈ 3.42. However, Simon’s

original model would predict an exponent of about 2.16 for outlinks, similar to that for inlinks.

Another interpretation of i is the number of pages within Web sites (referred to as web-
pages). In this case, Huberman and Adamic [HA99] reported a power-law distribution with

exponent 1.85, derived from a 250,000 Web site crawl. Our model cannot explain this obser-
vation as the exponent is less than two. A more recent result from a private communication

with Adamic reported an exponent of 2.2, derived from a 1.6 million Web site crawl; the
difference is possibly due to a different crawling strategy. To calculate p we can estimate the
size of the Web to be 2.1 billion pages [MM00] distributed over approximately 113.5 million

Web sites (this number, which was reported on www.netsizer.com during the first quarter of
2001, refers to the number of Internet hosts, so it is an over-estimate of the number of Web

sites). Thus we can derive a value 0.054 for p; in reality p will be even closer to zero. To get
an exponent of 2.2 we would have to assume α ≈ 2.50. This gives a more accurate description

than we would obtain from Simon’s original model, which would predict an exponent of 2.06.

As a final interpretation, let i be the number of users visiting a Web site during the
course of a day (referred to as visitors). In this case, Adamic and Huberman [AH00] reported

a power-law distribution with exponent 2.07, derived from access logs of 60,000 AOL users
accessing 120,000 Web sites. Now, from www.netsizer.com we obtain the statistic that in the
USA there were 72.7 million Internet hosts and 166.6 million users at the beginning of 2001.

Moreover, from www.netvalue.com we obtain the statistic that, on average, users visit about
1.93 different Web sites per day. So, we derive the value 72.7/(166.6∗ 1.93) ≈ 0.226 for p, on

the assumption that each Web site gets visited at least once per day. Thus to get an exponent
of 2.07 we would have to assume α ≈ −0.76. However, Simon’s original model would predict

an exponent of about 2.29.

In order to validate our model, we programmed a simulation of the stochastic model

using the parameter values we have derived for p and α and compared the exponent values
obtained with the reported empirical values. (Our simulation is in the spirit of Simon and
Van Wormer’s Monte Carlo simulation, whose intention was to test how good the estimates

of the original model are [SV63].) We repeated the simulation five times using the pk-model,
and five times using the p-model. Each simulation was carried out for 200,000 iterations,

and for the purpose of regression we considered only the first 25 urns. The results of our
simulations are presented in Table 1; in all cases the correlation coefficient of the regression

analysis was close to one. The discrepancy between the simulated values and the empirical
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values can be attributed in part to the fact that (22) is only an asymptotic approximation to

(21). It is also possible that running the simulations for a much larger number of iterations
would give more accurate results.

Interpretation Empirical pk-model p-model

inlinks 2.09 2.096 2.094

outlinks 2.72 2.714 2.675
webpages 2.2 2.122 2.208
visitors 2.07 2.131 2.179

Table 1: Power law exponents of simulation results

For outlinks and webpages we restarted the pk-model simulation whenever the computed

value of pk+1 was ill-defined, i.e. negative; only a moderate number of restarts were necessary.
From (3) it can be shown that, for k > 1, | pk+1 − pk | is of the order of 1/k. This indicates

that for large k it is very unlikely that pk+1 will be ill-defined, given that pj is well defined
for j ≤ k. In practice, if instead of starting with just one ball in urn1, we start from a typical

initial configuration with a modest number of balls in the urns, it is likely that pk+1 will be
well defined for all k.

Batch Overall k ≤ 10 Average k Max k

1 66 89% 3.78 21

2 63 90% 3.86 26
3 63 90% 3.34 13
4 60 88% 3.68 30

5 63 90% 3.73 22
6 65 92% 3.49 22

7 61 92% 3.50 17
8 64 94% 3.54 22

9 64 86% 4.19 34
10 59 92% 3.49 21

Average 63 90% 3.66 23

Table 2: Statisitcs for restarts, with p = 0.15 and α = 3.5

To illustrate this point, let us now examine more closely the situation regarding restarts
for outlinks, rounding off p to be 0.15 and α to be 3.5. It can be verified that the probability

that p3 be ill-defined is 0.15, that p4 be ill-defined is about 0.1905, that p5 be ill-defined is
about 0.1769 and that p6 be ill-defined is 0. Thus the total probability of pk being ill-defined

for k ≤ 6 is about 0.5174. Table 2 shows the values of a simulation where the pk-model was
run 1000 times in batches of 100 runs each. Whenever pk was ill-defined for a given run,

this run was considered to be a restart and the simulation moved on to the next run. The
second column shows the numbers of restarts within the batch, the third column shows the

percentage of the restarts observed with pk ill-defined for k ≤ 10, the fourth column shows
the average stage at which the restarts became ill-defined and the fifth column shows the
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maximum stage at which any restart became ill-defined. Thus, if the process is well defined

for, say, 50 or more stages, it is very unlikely to become ill-defined at a later stage.

4 Concluding Remarks

We have extended Simon’s classical stochastic model by adding to it a non-preferential com-

ponent which is combined with preferential attachment. When viewing this stochastic process
in terms of an urn transfer model, this amounts to choosing balls proportional to the number

of times they have previously been selected (i.e. the number of pins) plus a constant α > −1.
From the equations of this process we derived an asymptotic formula for the exponent of the

resulting power-law distribution. As far as we are aware our proof given in the Appendix is
the first formal proof of the convergence of Simon’s model; unlike in previous work, we do

not rely on the mean-field theory approach.

Utilising our result we are able to explain several power-law distributions in the Web graph,

which we now summarise. For the distribution of incoming links we derived α ≈ −0.37, for
the distribution of outgoing links we derived α ≈ 3.42, for the distribution of pages in a

Web site we derived α ≈ 2.50 and, finally, for the distribution of visitors to a Web site we
derived α ≈ −0.76. In all cases our extension of Simon’s original model can better explain the

exponent of the power-law distribution, implying that there is some mixture of preferential
and non-preferential attachment in the selection process.

The power law distribution that we have established can be stated as a hypothesis: in
order to explain the evolution of the Web graph both preferential and non-preferential processes
are at work. This hypothesis is more consistent with empirical data than the one which utilises

only preferential attachment. Our model is still limited to the cases where the exponent of the
power-law distribution is greater than two. We are currently investigating a possible model

which could yield an exponent less than two.

A Appendix : Proofs

We first prove (7) and (8). Since at stage k + 1 we add a new ball with probability pk+1,

Ek(B(k + 1)) = B(k) + pk+1,

so, taking expectations,
E(B(k+ 1)) = E(B(k)) +E(pk+1). (23)

Lemma A.1 For k > 1,

E(B(k)) = E

( k∑

i=1

Fi(k)

)
= 1 + (k − 1)p (24)

and

E(pk) = p. (25)
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Proof. We prove the result by induction on k. For k = 2, remembering that B(1) = 1 and

using (3), it is easy to see that p2 = p, and thus, by using (23), that

E(B(2)) = 1 + E(p2) = 1 + p.

Now assume that (24) and (25) hold for some k, k > 1. Then,

E(pk+1) = 1− (1− p)(k + αE(B(k)))

k(1 + αp) + α(1− p) = 1− (1− p)(k + α(1 + (k− 1)p))

k(1 + αp) + α(1− p) = p

and thus, using (23),

E(B(k+ 1)) = 1 + (k − 1)p+ p = 1 + kp. 2

We now consider condition (4) needed for pk+1 to be well defined.

Lemma A.2 pk+1 is always well defined (i.e. non-negative) for all k when p ≥ 1/2, but only

if
α ≤ p

1− 2p

when p < 1/2.

Proof. In order that pk+1 ≥ 0, condition (4) must hold. This is equivalent to

α(B(k)− 1) ≤ kp (1 + α)

1− p . (26)

There are three cases to consider:

(I) When α = 0, there are no restrictions on p.

(II) When −1 < α < 0, it is straightforward to see that again there are no restrictions on

p since, in this case, the maximum value of the left-hand side of (26) is zero, when
B(k) = 1.

(III) When α > 0, we see from (26) that we must have

p ≥ α(B(k)− 1)

α(B(k)− 1) + k(1 + α)
.

Setting B(k) to its maximum value k, this requires that

p ≥ α(k − 1)

α(2k − 1) + k
, (27)

which will hold for all k provided
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p ≥ α

2α+ 1
,

in particular this holds for all α when p ≥ 1/2 . However, for p < 1/2, for (27) to hold for all

k we need
α ≤ p

1− 2p
. 2

We conclude by proving that as k tends to infinity E(Fi(k))/k tends to fi, justifying our
derivation of the asymptotic distribution of the balls in the urns. We first state some useful

properties of fi, which may be verified directly using (16) and (17).

Lemma A.3

(I) For all i ≥ 1, 0 < fi < 1 and fi > fi+1.

(II)
∑∞
i=1 fi = p and

∑∞
i=1 ifi = 1. 2

Theorem A.4 For all i ≥ 1,

lim
k→∞

E(Fi(k))

k
= fi.

Proof. Using (18) to rewrite (14) and (15), we obtain, for i > 1,

(k + 1)(fi + εi,k+1) = k(fi + εi,k) + kβk(i− 1 + α)(fi−1 + εi−1,k)− kβk(i+ α)(fi + εi,k) (28)

and, for i = 1,

(k+ 1)(f1 + ε1,k+1) = k(f1 + ε1,k)− kβk(1 + α)(f1 + ε1,k) + p. (29)

Equations (16) and (17) may be written in a similar form as

(k + 1)fi = kfi + β(i− 1 + α)fi−1 − β(i+ α)fi (30)

and

(k + 1)f1 = kf1 − β(1 + α)f1 + p. (31)

For i > 1, subtracting (30) from (28) yields:

(k+1)εi,k+1 = kεi,k+kβk(i−1+α)εi−1,k−kβk(i+α)εi,k+(kβk−β)
(
(i−1+α)fi−1−(i+α)fi

)
.

Using (16) and (11) this simplifies to

(k + 1)εi,k+1 =
(
1− βk(i+ α)

)
kεi,k + βk(i− 1 + α)kεi−1,k − αβkfi. (32)
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Similarly, for i = 1, subtracting (31) from (29) and using (11), we obtain:

(k + 1)ε1,k+1 =
(
1− βk(1 + α)

)
kε1,k + αββk(1 + α)f1. (33)

From (32), by virtue of Lemma A.3(I) and (13), for i > 1, we have

(k + 1) |εi,k+1 |≤
(
1− βk(i+ α)

)
k |εi,k | +βk(i− 1 + α)k |εi−1,k | + |α | βk. (34)

We now define

δk = max
i≥1
|εi,k | = max

1≤i≤k+1
|εi,k | . (35)

(The two maxima are equal since, by (18), εi,k = −fi for i > k, and fi is monotonic decreas-

ing.)

On using (35), inequality (34) yields

(k + 1) |εi,k+1 |≤ (1− βk)kδk+ |α | βk (36)

for i > 1.

Similarly, from (33), on using (35) together with (12), (13) and Lemma A.3(I), it follows
that

(k + 1) |ε1,k+1 |≤
(

1− βk(1 + α)

)
kδk+ |α | βk(1 + α). (37)

We show by induction on k that

kδk ≤ max{1, |α |}. (38)

From (18) and (35) we see that δ1 = max{1− f1, f2}. So, by Lemma A.3(I), (38) holds

for k = 1.

Now assume that (38) holds for some k ≥ 1. So, for i > 1, (36) gives

(k+ 1) |εi,k+1 |≤ (1− βk) max{1, |α |} + |α | βk ≤ max{1, |α |}. (39)

Similarly, for i = 1, (37) gives

(k+ 1) |ε1,k+1 |≤
(

1− βk(1 + α)

)
max{1, |α |} + |α | βk(1 + α) ≤ max{1, |α |}. (40)

Therefore, from (39) and (40), (k + 1)δk+1 ≤ max{1, |α |}.
So, by induction, (38) holds for all k ≥ 1. Thus, to conclude the proof, we note that, as

k tends to infinity, δk tends to 0, so εi,k tends to 0 for all i. 2
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